新生名字引热议:从"扶苏"到"知潼"

DeepSeek 2025-09-03 阅读:87 评论:0
2025年9月1日,国内多地中小学迎来开学日,山东德州天衢东路小学一年级新生报到现场,一场别开生面的"名字文化展"悄然上演。当孩子们依次自我介绍时,"叶扶苏""谢知潼""...

2025年9月1日,国内多地中小学迎来开学日,山东德州天衢东路小学一年级新生报到现场,一场别开生面的"名字文化展"悄然上演。当孩子们依次自我介绍时,"叶扶苏""谢知潼""刘邕熙"等颇具古风的名字引发围观者惊叹,网友直呼:"仿佛打开了一本古风小说!"

这股"文化取名潮"并非偶然。据统计,仅德州两所小学就有近半数新生名字融入诗词典故或历史元素,如"琮文"取自《周礼》玉器,"沅泉"暗含《楚辞》地理意象。教育学者指出,90后父母成长于文化自信崛起的时代,更倾向于通过名字传递文化认同。一位家长表示:"给孩子取名'知潼',既希望她如潼水般包容,也暗含'知书达理'的期许。"
0250903124511.png

名字的变迁折射社会审美转向。十年前流行的"梓涵""子轩",如今多已升入初中,而"菊""红"等传统名字则成为祖辈的专属。新京报评论称,这种变化体现国内家庭对精神传承的重视,但需警惕过度追求"文化符号"而忽视名字的实用性。天衢东路小学教师李敏观察发现,部分生僻字名字虽雅致,却给孩子书写和社交带来困扰,"文化传承与实用性的平衡仍是关键"。


版权声明

本文仅代表作者观点,不代表百度立场。
本文系作者授权百度百家发表,未经许可,不得转载。

热门文章
  • 彩虹为何总以半圆之姿绽放?揭秘光与水的几何之舞

    彩虹为何总以半圆之姿绽放?揭秘光与水的几何之舞
    当雨后阳光穿透水滴,天空便绘出一道绚丽的半圆弧线——彩虹。这一自然奇观的半圆形并非偶然,而是光、水与几何法则共同书写的诗意答案。光的路径:折射、反射与色散的精密计算彩虹的形成始于阳光进入雨滴时的折射。当光线以特定角度(约42°)射入水滴,会发生两次关键操作:第一次折射:光速减缓导致路径偏折,不同波长的光(红、橙、黄…紫)因折射率差异初步分散;内部反射:光线抵达水滴后壁时,遵循“全反射”定律折返;第二次折射:离开水滴时再次偏折,完成颜色的最终分离。这一系列操作中,红色光因波长最...
  • 广东防风应急响应升至Ⅱ级:全域戒备应对极端天气挑战

    广东防风应急响应升至Ⅱ级:全域戒备应对极端天气挑战
    2025年8月13日,广东省三防办宣布将防风应急响应提升至Ⅱ级,以应对即将登陆的强台风“天鹰”。此次升级标志着广东进入“全域戒备”状态,政府、社会与民众需协同应对可能引发的风暴潮、洪涝等次生灾害。台风动态:超强台风“天鹰”路径与威胁据中央气象台监测,台风“天鹰”中心风力已达17级(65米/秒),预计于8月14日夜间在粤西沿海登陆。其特点包括:路径诡异:呈现“西偏南”走向,可能避开台湾山脉削弱,以超强台风级直扑广东;风雨潮三碰头:登陆时正值天文大潮期,珠三角、粤西沿海将出现1....
  • 9岁男孩的勇敢之旅:独自坐飞机出国考试

    9岁男孩的勇敢之旅:独自坐飞机出国考试
    在国内教育竞争日益激烈的背景下,越来越多的家长开始注重孩子的全面发展,为孩子提供更多的学习机会和挑战。有一位9岁的男孩小阳,就开启了一场令人惊叹的勇敢之旅——独自坐飞机出国考试。小阳从小就展现出了对学习的浓厚兴趣和天赋,尤其是在语言方面,他有着独特的感知能力和学习能力。为了让他能接触到更国际化的教育环境,提升自己的语言水平,小阳的父母决定让他参加一场国外的语言考试。然而,由于工作原因,父母无法陪同小阳一起前往国外,这意味着小阳要独自完成这次跨国之旅。面对这个挑战,小阳没有丝毫...
  • 鸣潮奥古斯塔阵容搭配指南

    鸣潮奥古斯塔阵容搭配指南
    随着《鸣潮》2.1版本更新,新角色奥古斯塔成为玩家关注焦点。经过一周测试,三套高效阵容逐渐成型,其中“奥古斯塔+尤诺+守岸人”组合以92%深渊通关率稳居榜首。顶配阵容:奥尤守铁三角该阵容核心在于尤诺的专属技能“重击共鸣”,可使奥古斯塔重击伤害提升180%,同时守岸人的护盾能触发荣斗套声骸的减伤效果。奥古斯塔需优先堆叠暴击率与重击加成,尤诺则选择充能套保证大招循环。数据显示,该组合在12层深渊中平均通关时间为2分15秒,较第二名快37秒。平民替代方案:奥莫守过渡队对于未抽取尤诺...
  • 为什么可乐会冒气泡?揭秘碳酸饮料的“沸腾”秘密

    为什么可乐会冒气泡?揭秘碳酸饮料的“沸腾”秘密
    打开一罐冰镇可乐,伴随着“呲——”的一声,无数细密的气泡欢腾着涌向水面,带来清爽的刺激感。这种令人愉悦的“气泡爆炸”现象,背后隐藏着哪些科学原理?二氧化碳的“封印与解放”可乐气泡的本质是二氧化碳(CO₂)气体。在生产过程中,工厂会在高压环境下将大量CO₂溶解于饮料中,形成碳酸(H₂CO₃)。当罐体密封时,高压迫使CO₂稳定存留在液体里;而一旦拉开拉环,气压骤降,溶解的CO₂迅速挣脱束缚,变成气泡逸出。气泡的诞生与上升仔细观察会发现,气泡往往从杯壁或饮料中的微小瑕疵(如灰尘、划...